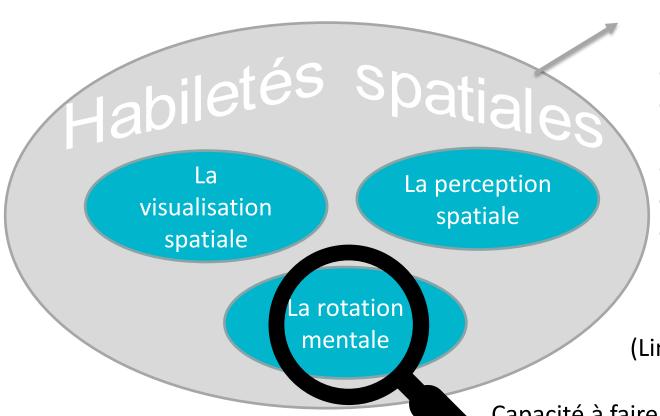


Evaluer la rotation mentale à l'aide du matériel tangible : une alternative aux épreuves papier-crayon traditionnelles pour les élèves de 8 à 12 ans ?


Romain Beauset (Aspirant FRS-FNRS) Natacha Duroisin (Professeur)

Service d'Education et des Sciences de l'Apprentissage (EDUSA)

Objet d'étude:

L'évaluation des habiletés spatiales chez les enfants et adolescents

Processus cognitifs se rapportant à la manière dont on apprend un environnement et les relations qu'entretiennent les objets de cet environnement.

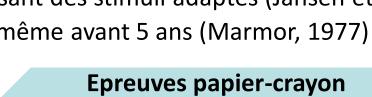
(Darken & Sibert, 1996)

(Linn & Pertersen 1985)

<u>Pourquoi évaluer la rotation mentale chez les</u> enfants/adolescents ?

L'habileté est liée à la réussite dans de nombreux domaines académiques et professionnels comme par exemple les mathématiques (ex. Casey et al., 1995; Rodán et al., 2016; Mix et al., 2016; Fernández-Méndez et al., 2020)

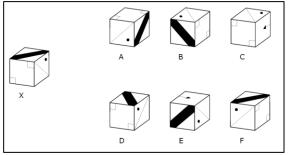
L'habileté intervient lors de la réalisation de nombreuses tâches du quotidien (ex. Mu et al., 2016)


→ Evaluer l'habilité peut aider à la compréhension de certaines difficultés

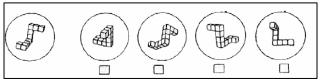
Dans notre contexte, focus sur la rotation mentale en vue d'évaluer la corrélation avec d'autres habiletés spatiales → variable permettant de mieux comprendre la capacité de perception de la 3D et de visualisation spatiale

Comment est évaluée la rotation mentale ?

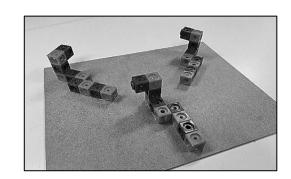
L'évaluation de cette habileté semble possible dès 5 ans en utilisant des stimuli adaptés (Jansen et al., 2013), voire même avant 5 ans (Marmor, 1977)



De nombreuses épreuves


(parfois numérisées)

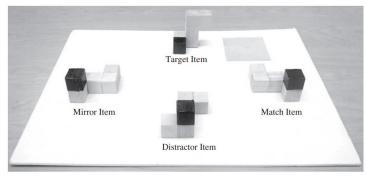
Ex: Vandenberg et Kuse (1978), Levine et al. (1999), Shepard et Metzler (1975),...



Epreuves avec matériel tangible

Plusieurs études ont investigué l'évaluation avec matériel tangible : McWilliams et al. (1997), Felix et al. (2010), Robert et Chevrier (2003), Rahe et Quaiser-Pohl (2022) ...

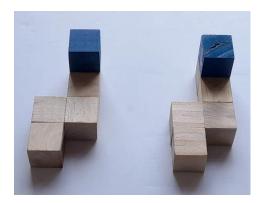
→ majoritairement pour adultes

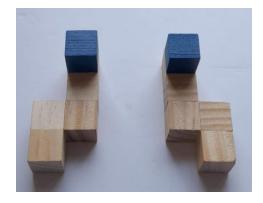


Quelle épreuve choisie?

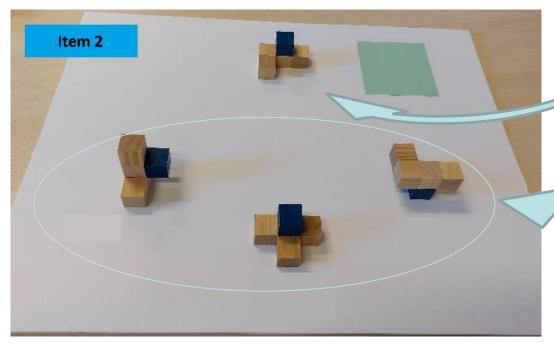
- Souhait de se focaliser sur des rotations en profondeur d'objets géométriques en 3D
- Travail avec des enfants de 6 à 12 ans (voir même plus)
- Existence de difficultés à percevoir la 3D à partir de représentations 2D (Pittalis & Christou, 2013 ; Beauset & Duroisin, 2023)
- → Limites aux épreuves papiers-crayon et informatisées (Rahe & Quaiser-Pohl, 2022; ...)

Epreuve de la 3D-MRBT (Hawes et al.,2015)


- ✓ Rotations en profondeur
- ✓ Construite pour les enfants de 4-8 ans


Descriptif de la 3D-MRBT

- ✓ Test pensé initialement pour les 4-8 ans
- ✓ Environ 15 minutes
- ✓ <u>Vérification du vocabulaire « identique »</u> + 1 item d'essai + 16 items



Descriptif de la 3D-MRBT

- ✓ Test pensé initialement pour les 4-8 ans
- ✓ Environ 15 minutes
- ✓ Vérification du vocabulaire « identique » + 1 item d'essai + 16 items

1 modèle et 3 propositions

Cible

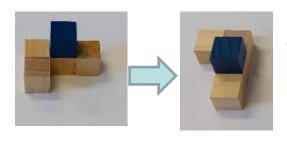
Miroir

Distracteur

- -L'élève doit montrer la proposition identique au modèle.
- -Lorsqu'il choisit une proposition, il doit s'autocorriger en plaçant la proposition dans le carré vert dans la même position que le modèle
- -S'il s'est trompé, il peut donner une autre réponse

Descriptif de la 3D-MRBT

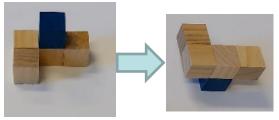
- ✓ Test pensé initialement pour les 4-8 ans
- ✓ Environ 15 minutes
- √ Vérification du vocabulaire « identique » + 1 item d'essai + 16 items

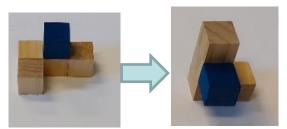


-Différents modèles (4)

Descriptif de la 3D-MRBT

- ✓ Test pensé initialement pour les 4-8 ans
- ✓ Environ 15 minutes
- ✓ Vérification du vocabulaire « identique » + 1 item d'essai + 16 items




Vertical

-Différents modèles (4)

-Différents types de rotation (Axe) Vertical / Horizontal / Vertical et horizontal

Horizontal

Vertical et horizontal

Descriptif de la 3D-MRBT

- ✓ Test pensé initialement pour les 4-8 ans
- ✓ Environ 15 minutes
- ✓ Vérification du vocabulaire « identique » + 1 item d'essai + 16 items

Item#	ltem type (modèle)	Type de rotation	Rotation requise (angle et sens)	Angle total de rotation
1	А	V	45° horloger	45°
2	В	Н	180° avant ou arrière	180°
3	А	V/H	90° arrière, 90° horloger	180°
4	В	V	90° horloger	90°
5	А	Н	90° gauche	90°
6	В	V/H	90° gauche, 90° antihorloger	180°
7	С	V	135°horloger	135°
8	D	Н	90° avant	90°
9	С	V/H	90° arrière, 45° horloger	135°
10	D	V	135° horloger	135°
11	С	Н	90° arrière	90°
12	D	V/H	90° arrière, 135° horloger	225°
13	А	V	180° horloger/antihorloger	180°
14	В	Н	90° gauche	90°
15	С	V/H	90° arrière, 90° antihorloger	180°
16	D	Н	90° arrière	90°

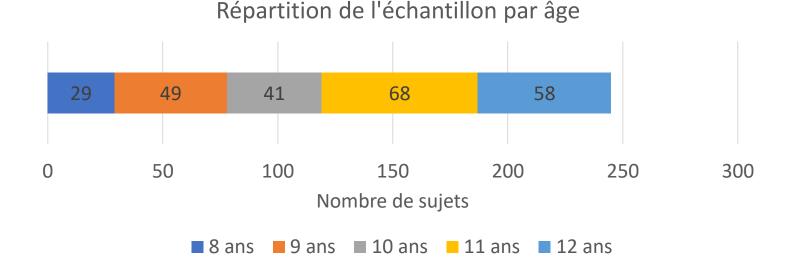
- -Différents modèles (4)
- -Différents types de rotation (Axe) Vertical / Horizontal / Vertical et horizontal

-Différentes angles et sens de rotation

Descriptif de la 3D-MRBT

- ✓ Test pensé initialement pour les 4-8 ans
- ✓ Environ 15 minutes
- ✓ Vérification du vocabulaire « identique » + 1 item d'essai + 16 items
- ✓ Correction:

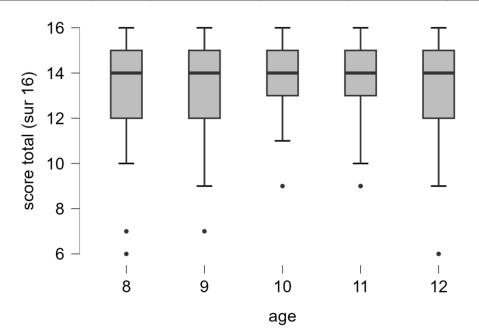
- -Score sur base du premier choix uniquement
- -L'item d'essai n'est pas pris en compte.
- -1 point est attribué par item correct → Une note sur 16 est obtenue.


-Mesure du temps → temps moyen pour les items réussi

Echantillon:

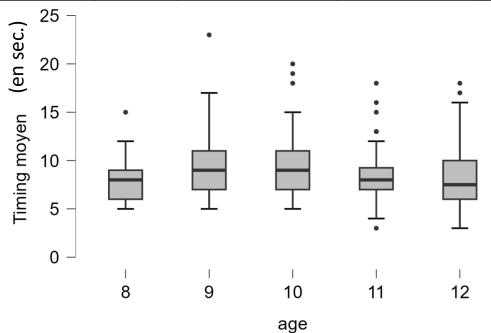
Echantillon souhaité : N = 300 (+-60 par âge)

Expérimentation en cours!


Echantillon actuel : N = 245

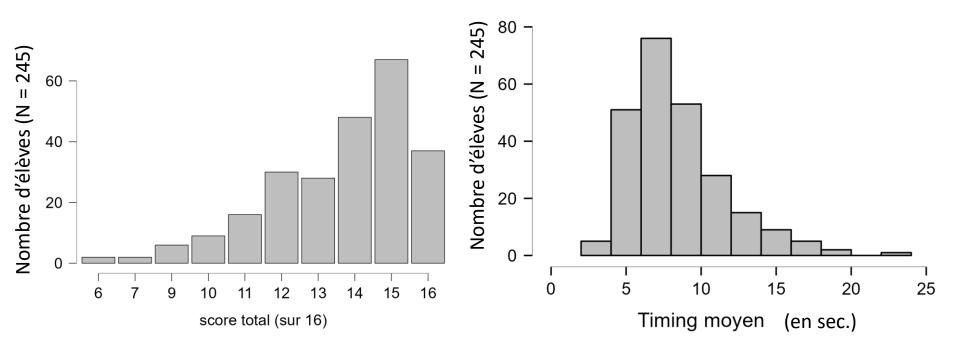
Echantillon tout-venant provenant d'écoles d'enseignement primaire et secondaire de FWB

Au niveau des scores sur 16

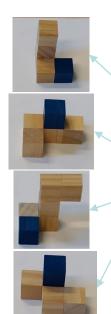

Âge	N	Moyenne (sur 16)	Médiane	Ecart-type	Min.	Max.	Nombre d'élèves ayant atteint le max.
8 ans	29	13.172	14	2.592	6	16	6
9 ans	49	13.612	14	2.139	7	16	8
10 ans	41	14.000	14	1.549	9	16	5
11 ans	68	13.588	14	1.764	9	16	7
12 ans	58	13.655	14	2.173	6	16	11

Pas de corrélation entre âge et score moyen Pas de différences significatives entre les catégories d'âge

Au niveau des temps moyens pour l'ensemble des items réussis


Âge	N	Temps moyen (en seconde)	Ecart-type	Temps min. (en sec.)	Temps max. (en sec.)
8 ans	29	8,310	2,466	5	15
9 ans	49	9,510	3,392	5	23
10 ans	41	9,780	3,732	5	20
11 ans	68	8,456	2,701	3	18
12 ans	58	8,533	3,460	3	18

Pas de corrélation entre âge et temps moyen

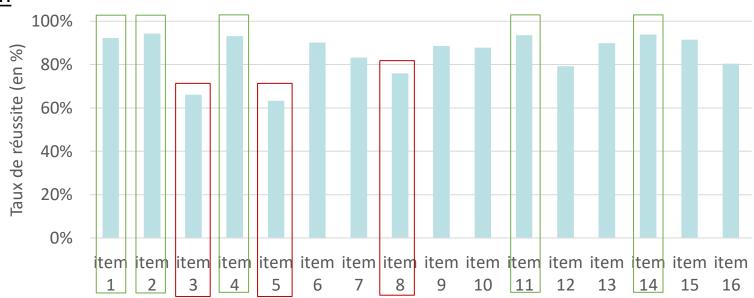

Pas de différences significatives entre les catégories d'âge

Répartition des scores et temps

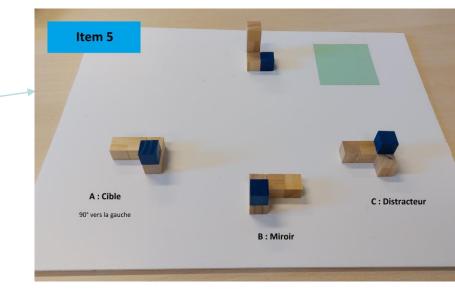
Pas de corrélation entre le score moyen et le temps moyen (0,078)

Score selon les types d'items (N = 245)

Type de modèle	Moyenne (sur 4)	Ecart-type
A	3,114	0,861
В	3,714	0,565
С	3,567	0,702
D	3,233	0,886

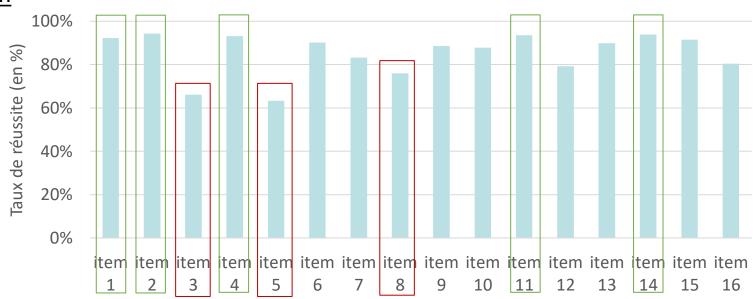

P-value Wilcoxon	Α	В	С	D
А	/	<0,001	<0,001	0,084
В	/	/	0,004	<0,001
С	/	/	/	<0,001
D	/	/	/	/

Type de rotation	Moyenne (en %)	Ecart-type	
V (sur 5)	89,22	0,802	
H (sur 6)	83,5	0,998	
V/H (sur 5)	83,1	0,958	

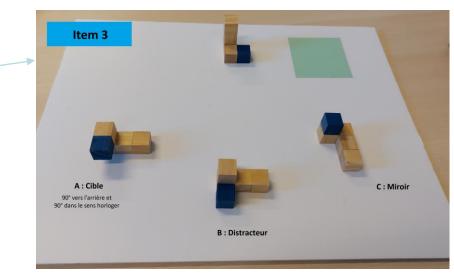

P-value Wilcoxon	V	Н	V/H
V	/	<0,001	<0,001
Н	/	/	<0,001
V/H	/	/	/

Réussite par item

Taux de réussite par item (N =245)

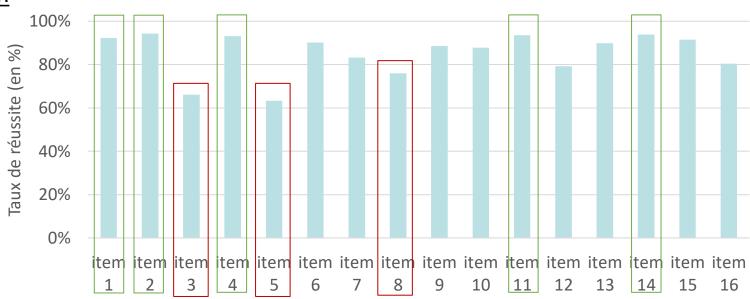


	Item type	Type de	Rotation requise	Angle total
Item#	(modèle)	rotation	(angle et sens)	de rotation
1	А	V	45° horloger	45°
2	В	Н	180° avant ou arrière	180°
3	А	V/H	90° arrière, 90° horloger	180°
4	В	V	90° horloger	90°
5	А	Н	90° gauche	90°
6	В	V/H	90° gauche, 90° antihorloger	180°
7	С	V	135°horloger	135°
8	D	Н	90° avant	90°
9	С	V/H	90° arrière, 45° horloger	135°
10	D	V	135° horloger	135°
11	С	Н	90° arrière	90°
12	D	V/H	90° arrière, 135° horloger	225°
13	А	V	180° horloger/antihorloger	180°
14	В	Н	90° gauche	90°
15	С	V/H	90° arrière, 90° antihorloger	180°
16	D	Н	90° arrière	90°

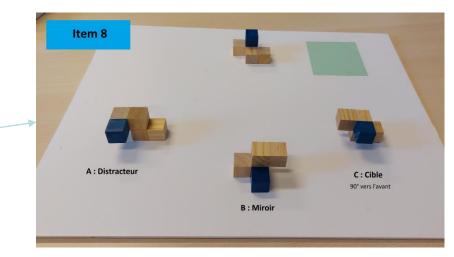


Réussite par item

Taux de réussite par item (N =245)



	Item type	Type de	Rotation requise	Angle total
Item#	(modèle)	rotation	(angle et sens)	de rotation
1	А	V	45° horloger	45°
2	В	Н	180° avant ou arrière	180°
3	А	V/H	90° arrière, 90° horloger	180°
4	В	V	90° horloger	90°
5	А	Н	90° gauche	90°
6	В	V/H	90° gauche, 90° antihorloger	180°
7	С	٧	135°horloger	135°
8	D	Н	90° avant	90°
9	С	V/H	90° arrière, 45° horloger	135°
10	D	V	135° horloger	135°
11	С	Н	90° arrière	90°
12	D	V/H	90° arrière, 135° horloger	225°
13	А	٧	180° horloger/antihorloger	180°
14	В	Н	90° gauche	90°
15	С	V/H	90° arrière, 90° antihorloger	180°
16	D	Н	90° arrière	90°



Réussite par item

Taux de réussite par item (N =245)

	Item type	Type de	Rotation requise	Angle total
Item#	(modèle)	rotation	(angle et sens)	de rotation
1	Α	V	45° horloger	45°
2	В	Н	180° avant ou arrière	180°
3	А	V/H	90° arrière, 90° horloger	180°
4	В	V	90° horloger	90°
5	А	Н	90° gauche	90°
6	В	V/H	90° gauche, 90° antihorloger	180°
7	С	٧	135°horloger	135°
8	D	Н	90° avant	90°
9	С	V/H	90° arrière, 45° horloger	135°
10	D	٧	135° horloger	135°
11	С	Н	90° arrière	90°
12	D	V/H	90° arrière, 135° horloger	225°
13	Α	V	180° horloger/antihorloger	180°
14	В	Н	90° gauche	90°
15	С	V/H	90° arrière, 90° antihorloger	180°
16	D	Н	90° arrière	90°

Discussion des résultats :

- Les élèves arrivent à faire preuve de rotation mentale en profondeur à cet âge-là!
 - → Cohérence avec des preuves empiriques (ex. Quaiser-Pohl et al., 2010; Jansen et al., 2013)
 - → Incohérence avec la difficulté observée chez les 7-10 ans à faire preuve de rotation mentale sur des objets 3D (Hoyek et al., 2012; Ruthsatz et al., 2017)
- Le score à l'épreuve 3D-MRBT et le temps moyen de réponse ne semblent plus évoluer après 8 ans même si Hawes et al. (2015) ont identifié qu'il évoluait de 4 à 8 ans
- -Décalage avec le score moyen obtenu par les élèves de 7-8 ans dans l'expérimentation d'Hawes et al. $(2015) \simeq 9,5/16$
- Au niveau des scores (notes sur 16), le test permet d'identifier certaines élèves ayant des difficultés à faire preuve de rotation mentale mais de nombreux élèves obtiennent le score maximal (ou presque) et le test ne permet pas de les discriminer
- L'analyse des temps de réponse permet tout de même de discriminer les élèves

Discussion des résultats :

Forces relatives à l'épreuve

- Rotation en perspective et pas uniquement dans le plan
- Permet d'éviter certaines limites relatives aux épreuves papier-crayon Rahe et Quaiser-Pohl (2022)

- ...

Limites relatives à l'épreuve

- Peu discriminante
- D'autres processus cognitifs entrent en jeu dans l'épreuve : l'inhibition

-

Prolongements

 Adapter l'épreuve et la complexifier en vue de discriminer davantage les élèves : prise d'appui sur les items les plus discriminants pour repenser le test

- ..

Bibliographie:

- Beauset, R., & Duroisin, N. (à paraître en 2023). L'évaluation des habiletés spatiales au service de l'enseignement-apprentissage de la géométrie tridimensionnelle : qu'en est-il des environnements virtuels 2 ½ D ? Dans N. Loye et N. Duroisin (dir.), Évaluation des apprentissages et technologies numériques : évolution, nouveautés et défis actuels. Peter Lang.
- Casey, B., Nuttall, R. L., Pezaris, E., & Benbow, C. P. (1995). The influence of spatial ability on gender differences in mathematics college entrance test scores across diverse samples. *Developmental Psychology*, 31, 697-705.
- Darken, R. & Sibert, J. (1996). Navigating Large Virtual Spaces. *International Journal of Human-Computer Interaction,* 8(1), 49-72.
- Felix, M. C., Parker, J. D., Lee, C., & Gabriel, K. I. (2011). Real threedimensional objects: Efects on mental rotation. *Perceptual and Motor Skills*, 113(1), 38–50
- Fernández-Méndez, L., Contreras M., Mammarella, I., Feraco, T., & Meneghetti, C. (2020). Mathematical achievement: the role of spatial and motor skills in 6–8 year-old children. *PeerJ*, 8:e10095 https://doi.org/10.7717/peerj.10095
- Hawes, Z., LeFevre, J.-A., Xu, C., & Bruce, C. (2015). Mental Rotation With Tangible Three-Dimensional Objects: A New Measure Sensitive to Developmental Differences in 4- to 8-Year-Old *Children*. *Mind*, *Brain*, *and Education*, 9(1), 10–18. doi:10.1111/mbe.12051
- Hoyek, N., Collet, C., Fargier, P., & Guillot, A. (2012). The use of the Vandenberg and Kuse Mental Rotation Test in children. *Journal of Individual Differences*, 33(1), 62–67. https://doi.org/10.1027/1614-0001/a000063
- Jansen, P., Schmelter, A., Quaiser-Pohl, C., Neuburger, S., & Heil, M. (2013). Mental rotation performance in primary school age children: Are there gender differences in chronometric tests? *Cognitive Development*, 28(1), 51-62.
- Levine, S. C., Huttenlocher, J., Taylor, A., & Langrock, A. (1999). Early sex differences in spatial skill. *Developmental Psychology*, 35, 940–949. doi:10.1037/0012-1649.35.4.940
- Linn, M.C. & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: a metaanalysis. *Child Development*, 56, 1479-1498.
- Marmor, G. S. (1977). Mental rotation and number conservation: Are they related? *Developmental Psychology,* 13(4), 320–325. https://doi.org/10.1037/0012-1649.13.4.320

Bibliographie:

- McWilliams, W., Hamilton, C. J., & Muncer, S. J. (1997) On mental rotation in three dimensions. *Perceptual and Motor Skills*, 85, 297-298
- Mix, K. S., Levine, S. C., Cheng, Y. L., Young, C., & Hambrick, D. Z. (2016). Separate but correlated: The latent structure of space and mathematics across development. *Journal of Experimental Psychology: General, 145*(9), 1206–1227.
- Mu, X., Tian, Y., Wang, C., Guo, J., & Huang, S. (2016). Development of Computerized Testsfor the Evaluation of HumanThree-Dimensional Spatial Ability. In S. Long and B.S. Dhillon (eds.), Man-Machine-Environment System Engineering (pp. 169-177).
- Pittalis, M., & Christou, C. (2013). Coding and decoding representations of 3D shapes. *The Journal of Mathematical Behavior*, 32(3), 673–689.
- Quaiser-Pohl, C., Rohe, A. M., & Amberger, T. (2010). The solution strategy as an indicator of the developmental stage of preschool children's mental-rotation ability. *Journal of Individual Differences*, 31(2), 95–100. https://doi.org/10.1027/1614-0001/a000017
- Rahe, M., & Quaiser-Pohl, C. (2022). Protective effects of education on the cognitive decline in a mental rotation task using real models: a pilot study with middle and older aged adults. *Psychological Research*. 10.1007/s00426-022-01719-2
- Robert, M., & Chevrier, E. (2003) Does men's advantage in mental rotation persist when real three-dimensional objects are either felt or seen? *Memory & Cognition*, 31, 1136-1145
- Rodán, A., Contreras, M.J., Elosúa, R., & Gimeno, P. (2016). Experimental But Not Sex Differences of a Mental Rotation Training Program on Adolescents. *Frontiers in Psychology*, 7, Article 1050. doi: 10.3389/fpsyg.2016.01050.
- Ruthsatz, V., Neuburger, S., Jansen, P., & Quaiser-Pohl, C. (2014). Pellet fgures, the feminine answer to cube fgures? Infuence of stimulus features and rotational axis on the mental-rotation performance of fourth-grade boys and girls. In C. Freksa, B. Nebel, M. Hegarty, & T. Barkowsky (Eds.), International Conference on Spatial Cognition (pp. 370–382). Cham: Springer.
- Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. *Science*, 171, 701–703.
- Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations. A group test of three-dimensional spatial visualization. *Perceptual and Motor Skills*, 47, 599–604.

N'hésitez pas à prendre connaissance des recherches du service d'EDUcation et des Sciences de l'Apprentissage ainsi que des communications réalisées lors du congrès!

→ edusa.be

romain.beauset@umons.ac.be